Various inorganic soil amendments have been promoted as a means of improving the chemical and physical properties of certain soils. To test this hypothesis, a marginally productive soil was supplemented with 20%, 40%, 60%, and 80% (v/v) of either selected inorganic amendments or sand. Amendments consisted of commercially available diatomaceous earth, calcined clay, zeolite, and crystalline SiO2. The soil material was extracted from the argillic horizon of a Cecil sandy loam (fine, kaolinitic, thermic Typic Kanhapludults). Ability of these soil-amendment mixtures to promote `Tifway' bermudagrass [Cynodon dactylon (L.) Pers. × C. transvaalensis Burtt Davy] growth was evaluated under greenhouse conditions, and contrasted to that obtained in nonamended soil. Selected chemical and physical properties that are pertinent to plant growth were also evaluated. The experiment, which was conducted 3×, began with a §60-day period in which both water and nutrients were optimum. This was followed by a 30-day drought. During optimum water and nutrients, no soil-amendment treatment(s) consistently resulted in superior bermudagrass growth compared to soil alone. However, <2% of the bermudagrass tissue that was produced during the drought became green and succulent with the resumption of irrigation in nonamended soil. This percentage was exceeded by all treatments that contained either ≥60% diatomaceous earth (Axis), or ≥40% calcined clay (Profile); and by 100% zeolite (Clinolite) and 100% silica (Green's Choice). Drought-sustaining ability of soil-amendment mixtures was significantly (P < 0.05) correlated with water-holding ability, soil strength, bulk density, and oxygen diffusion rate, but not correlated with either pH or cation exchange capacity (CEC). While certain inorganic amendments did improve the drought-sustaining ability of soil, the amount required was generally ≥40%.