We examined how polysorbate 20 (PS20; Tween 20) and polysorbate 80 (PS80; Tween 80) affect the higher order structure of a monoclonal antibody (mAb) and its Fab and Fc fragments, using near-UV circular dichroism and 2D NMR. Both polysorbates bind to the mAb with sub-millimolar affinity. Binding causes significant changes in the tertiary structure of mAb with no changes in its secondary structure. 2D 13C-1H methyl NMR indicates that with increasing concentration of polysorbates, the Fab region showed a decrease in crosspeak volumes. In addition to volume changes, PS20 caused significant changes in the chemical shifts compared to no changes in the case of PS80. No such changes in crosspeak volumes or chemical shifts were observed in the case of Fc region, indicating that polysorbates predominantly affect the Fab region compared to the Fc region. This differential effect of polysorbates on the Fab and Fc regions was because of the lesser thermodynamic stability of the Fab compared to the Fc. These results further indicate that PS80 is the preferred polysorbate for this mAb formulation, because it offers higher protection against aggregation, causes lesser structural perturbation, and has weaker binding affinity with fewer binding sites compared to PS20.