Quinoline or 1-aza-naphthalene is a weak tertiary base. Quinoline ring has been found to possess antimalarial, anti-bacterial, antifungal, anthelmintic, cardiotonic, anticonvulsant, anti-inflammatory, and analgesic activity. Quinoline not only has a wide range of biological and pharmacological activities but there are several established protocols for the synthesis of this ring. The article aims at highlighting these very diversities of the ring.
The effect of mechanical stirring on sol-gel synthesis of thorn-like ZnO nanoparticles (ZnO-NPs) and antimicrobial activities is successfully reported in this study. The in-house synthesized nanoparticles were characterized by XRD, SEM, TEM, FTIR, TGA, DSC and UV-visible spectroscopy. The X-Ray Diffraction analysis revealed the wurtzite crystal lattice for ZnO-NPs with no impurities present. The diametric measurements of the synthesized thorn-like ZnO-NPs (morphology assessed by SEM) were well accounted to be less than 50 nm with the help of TEM. Relative decrease in aspect ratio was observed on increasing the agitation speed. The UV-visible spectroscopy showed the absorption peaks of the ZnO-NPs existed in both UVA and UVB region. A hypsochromic shift in λmax was observed when stirring pace was increased from 500 rpm to 2000 rpm. The FTIR spectroscopy showed the absorption bands of the stretching modes of Zn-O between 500 cm−1 to 525 cm−1. The Thermal analysis studies revealed better stability for ZnO-NPs prepared at 2000 rpm (ZnO-2000 rpm). TGA revealed the weight loss between two main temperatures ranges viz. around (90 °C–120 °C) and (240 °C–280 °C). Finally, the effect of ZnO-NPs prepared at different stirring conditions on the growth of Gram-positive (Bacillus subtilis), Gram-negative (Escherichia coli) bacteria and a fungi (Candida albicans) were examined; which showed good antibacterial as well as antifungal properties. These findings introduce a simple, inexpensive process to synthesize ZnO-NPs using conventional methods without the use of sophisticated equipments and its application as a potent nano-antibiotic.
Objectives This review discusses the limitations and applications of the everted gut sac model in studying drug absorption, metabolism, and interaction. Key findings The mechanism of drug absorption, interaction and the effect of factors such as age, sex, species, chronic therapy, and disease state on drug absorption have been summarized. The experimental conditions and their effects on the outcomes of trials have been discussed also. Summary The everted sac model is an efficient tool for studying in-vitro drug absorption mechanisms, intestinal metabolism of drugs, role of transporter in drug absorption, and for investigating the role of intestinal enzymes during drug transport through the intestine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.