A large radial temperature gradient in the AlN sublimation growth system would lead to non-uniform growth rate along the radial direction and introduce thermal stress in the as grown crystal. In this paper, we have numerically studied the radial thermal uniformity in the crucible of a AlN sublimation growth system. The temperature difference on the source top surface is insignificant while the radial temperature gradient on the lid surface is too large to be neglected. The simulation results showed that the crucible material with a large thermal conductivity is beneficial to obtain a uniform temperature distribution on the lid surface. Moreover, it was found that the temperature gradient on the lid surface decreases with increased lid thickness and decreased top window size.