In this paper, the propagation and localization of elastic waves in randomly disordered layered threecomponent phononic crystals with thermal effects are studied. The transfer matrix is obtained by applying the continuity conditions between three consecutive sub-cells. Based on the transfer matrix method and Bloch theory, the expressions of the localization factor and dispersion relation are presented. The relation between the localization factors and dispersion curves is discussed. Numerical simulations are performed to investigate the influences of the incident angle on band structures of ordered phononic crystals. For the randomly disordered ones, disorders of structural thickness ratios and Lamé constants are considered. The incident angles, disorder degrees, thickness ratios, Lamé constants and temperature changes have prominent effects on wave localization phenomena in three-component systems. Furthermore, it can be observed that stopbands locate in very low-frequency regions. The localization factor is an effective way to investigate randomly disordered phononic crystals in which the band structure cannot be described.