Band gaps of elastic waves, both in-plane and shear waves, propagating through one-dimensional perfect/defect phononic crystals (PnCs) that involve thermal effects are studied in this paper. Based on the transfer matrix method and Bloch theory, the expressions of the reflection coefficients and dispersion relation are presented. Elastic waves localization is obtained by immersing a defect layer through a perfect structure. Compared with the periodic structure, we observed that defected PnCs introduced localized modes or peaks within the phononic band gaps. Hence, Numerical simulations are performed to investigate the influences of the defect layer thickness and type on the number and intensity of the localized modes. Moreover, we have observed that temperature changes have prominent effects on the localized modes and band gaps width, especially at plane wave propagation. Such effects could change thermal properties of the PnCs structure such as thermal conductivity and could control the thermal emission contributed by phonons in many engineering structures.