Large-scale agricultural expansion can influence near-surface climate by altering surface energy fluxes, water, and albedo. It is less clear whether such effects extend through the full troposphere and how such effects vary in time. Here we use a novel dataset documenting the massive land use and land cover change due to agricultural expansion in Northeast China from 1982 to 2010 to assess how such expansion has influenced climate over the full troposphere. Confronting our land classification and climate data with a number of statistical approaches (linear regression, correlation analysis, Grangercausality), we find that cropland significantly increased by ∼28% over the near 30 year period in Northeast China-an average rate of nearly a percentage per year. This massive 30 year agricultural expansion is tightly associated with near-surface cooling identified in station data during the late growing season (August to September). Assuming no cropland expansion over the 30 year period, surface temperature would have increased by 0.93°C±0.4°C. Furthermore, the fingerprint of cropland-associated cooling extends upward into the atmospheric column, influencing the vertical structure of the regional troposphere and potentially its circulation. For every 10 percentage points increase in cropland fraction over Northeast China, regional full-troposphere temperature and geopotential height significantly decrease by 0.2°C-0.6°C and 20 m-80 m, respectively. These observed relationships are remarkably coherent across datasets, methodological choices, atmospheric levels, and theory, suggesting that the observational effects we identify are robust and imply the possibility of detectable land use change effects on regional circulation, with potential consequences for the East Asian monsoon.