Purpose
Accurate laparoscopic bowel length measurement (LBLM), which is used primarily in metabolic surgery, remains a challenge. This study aims to three conventional methods for LBLM, namely using visual judgment (VJ), instrument markings (IM), or premeasured tape (PT) to a novel computer-assisted 3D measurement system (BMS).
Materials and Methods
LBLM methods were compared using a 3D laparoscope on bowel phantoms regarding accuracy (relative error in percent, %), time in seconds (s), and number of bowel grasps. Seventy centimeters were measured seven times. As a control, the first, third, fifth, and seventh measurements were performed with VJ. The interventions IM, PT, and BMS were performed following a randomized order as the second, fourth, and sixth measurements.
Results
In total, 63 people participated. BMS showed better accuracy (2.1±3.7%) compared to VJ (8.7±13.7%, p=0.001), PT (4.3±6.8%, p=0.002), and IM (11±15.3%, p<0.001). Participants performed LBLM in a similar amount of time with BMS (175.7±59.7s) and PT (166.5±63.6s, p=0.35), but VJ (64.0±24.0s, p<0.001) and IM (144.9±55.4s, p=0.002) were faster. Number of bowel grasps as a measure for the risk of bowel lesions was similar for BMS (15.8±3.0) and PT (15.9±4.6, p=0.861), whereas VJ required less (14.1±3.4, p=0.004) and IM required more than BMS (22.2±6.9, p<0.001).
Conclusions
PT had higher accuracy than VJ and IM, and lower number of bowel grasps than IM. BMS shows great potential for more reliable LBLM. Until BMS is available in clinical routine, PT should be preferred for LBLM.
Graphical abstract