Noise and delay are ubiquitous in brain and they have significant effects on neuronal network synchronization and even brain functions. Based on a small-world neuronal network of delayed FitzHugh–Nagumo (FHN) neurons subjected to sine-Wiener (SW) bounded noise, the effects of delay and SW noise on synchronization and synchronization transition are numerically investigated by calculating a synchronization measure R and plotting spatiotemporal patterns. The phenomenon of delay-induced synchronization transition is observed as delay [Formula: see text] is increased. And large self-correlation time and strength of SW noise can increase the number of delay-induced synchronization transition. In addition, delay-induced synchronization transition is robust against the change of topology structure of neuronal network and this phenomenon becomes much easier to see for small nearest neighbors k in the small-world network. Since synchronization transition may imply functional switch, our results may have important implications, and inspire future studies.