The frequency of forest fires has increased dramatically due to climate change. The occurrence of forest fires affects the carbon and nitrogen cycles and react to climate change to form a positive feedback mechanism. These effects further impact the distribution of microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) and the soil microbial community structure. In addition, permafrost degradation can significantly affect the microorganisms in the soil. Based on these findings, this review examines the effects of fire intensity and post-fire recovery time on permafrost, the soil microbial community, MBC, MBN, and their interrelationships. This review demonstrated that (1) fires alter the condition of surface vegetation, reduce the organic layer thickness, redistribute snow, accelerate permafrost degradation, and even lead to permanent changes, where the restoration of the pre-fire state would require several decades or even centuries; (2) soil microbial community structure, soil MBC, and MBN negatively correlate with fire intensity, and the effects become more pronounced with increasing fire intensity; and (3) the structural diversity and stability of the soil microbial community were improved with time, and the amount of MBC and MBN increases as the years after a fire go by; it would still take more than ten years to recover to the pre-fire level. However, the relationship between permafrost degradation and soil microbes after forest fires is still unclear due to a lack of quantitative research on the mechanisms underlying the changes in soil microorganisms resulting from fire-induced permafrost degradation. Therefore, expanding quantitative studies and analyses of the mechanisms of interactions between forest fires, permafrost, and soil microorganisms can provide a scientific basis for understanding ecosystem carbon pools and dual-carbon targets in Arctic–boreal permafrost regions.