This study compared whole body kinematics of the clean movement when lifting three different loads, implementing two data analysis approaches based on principal component analysis (PCA). Nine weightlifters were equipped with 39 markers and their motion captured with 8 Vicon cameras at 100 Hz. Lifts of 60, 85, and 95% of the one repetition maximum were analyzed. The first PCA (PCAtrial) analyzed variance among time-normed waveforms compiled from subjects and trials; the second PCA (PCAposture) analyzed postural positions compiled over time, subjects and trials. Load effects were identified through repeated measures ANOVAs with Bonferroni-corrected post-hocs and through Cousineau-Morey confidence intervals. PCAtrial scores differed in the first (p < 0.016, ηp2 = 0.694) and fifth (p < 0.006, ηp2 = 0.768) principal component, suggesting that increased barbell load produced higher initial elevation, lower squat position, wider feet position after squatting, and less inclined arms. PCAposture revealed significant timing differences in all components. We conclude, first, barbell load affects specific aspects of the movement pattern of the clean; second, the PCAtrial approach is better suited for detecting deviations from a mean motion trajectory and its results are easier to interpret; the PCAposture approach reveals coordination patterns and facilitates comparisons of postural speeds and accelerations.