A study was conducted to determine effects of supplementing multi-enzyme on apparent ileal digestibility (AID) of energy and AA; and apparent total tract digestibility (ATTD) of energy for pigs fed low-energy and AA diets. Eight ileal-cannulated barrows (initial BW: 38.7 ± 2.75 kg) were fed four diets in a replicated 4 × 4 Latin square design to give 8 replicates per diet. Diets were positive control (PC) diet, negative control (NC) diet without or with multi-enzyme at 0.5 or 1.0 g/kg. The PC diet was formulated to meet or exceed NRC (2012) nutrient recommendations for grower pigs (25 to 50 kg), except for Ca and digestible P, which were lower than NRC (2012) recommendations by 0.13 and 0.17 percentage points, respectively, due to phytase supplementation at 1,000 FTU/kg. The NC diet was formulated to be lower in NE by 75 kcal/kg and standardized ileal digestible AA content by a mean of 3%. These reductions were achieved by partial replacement of corn and soybean meal (SBM) and complete replacement of soybean oil and monocalcium phosphate in PC diet with 25% corn distillers dried grains with solubles (DDGS) and 3.6% soybean hulls. Multi-enzyme at 1.0 g/kg supplied 1,900 U of xylanase, 300 U of β-glucanase, 1,300 U of cellulase, 11,500 U of amylase, 120 U of mannanase, 850 U of pectinase, 6,000 U of protease, and 700 U of invertase per kilogram of diet. The AID of GE, N, most AA, most component sugars of nonstarch polysaccharides (NSP) and P; ATTD of GE for PC diet was greater (P < 0.05) than those for NC diets. An increase in dietary level of multi-enzyme from 0 to 1.0 g/kg resulted in a linear increase (P < 0.05) in AID of Ile by 4.3%, and tended to linearly increase (P < 0.10) AID of Leu, Met, Phe, and Val by a mean of 3.4%. Increasing dietary multi-enzyme from 0 to 1.0 g/kg linearly increased (P < 0.05) AID of total NSP and P by 53.7% and 19.2%, respectively; ATTD of GE by 8.4% and DE and NE values by 8.8% and 8.2%, respectively; tended to linearly increase (P < 0.10) AID of GE by 8.1%. The NE values for NC diet with multi-enzyme at 1.0 g/kg tended to be greater (P < 0.10) than that for PC diet (2,337 vs. 2,222 kcal/kg of DM). In conclusion, multi-enzyme supplementation improved energy and nutrient digestibilities of a corn–SBM–corn DDGS-based diet, implying that the multi-enzyme fed in the current study can be used to enhance energy and nutrient utilization of low-energy AA diets for grower pigs.