Three-dimensionally ordered macroporous materials have unique structural and optical properties, making them useful for numerous applications in catalysis, membrane science, and optics. Accessible and economic fabrication of these materials is essential to fully explore the many possibilities that these materials present. A new templating method to fabricate three-dimensionally ordered macroporous materials without overlayers is presented. The resulting structures are freestanding inverse opals with large-area uniformity. The versatility and power of our fabrication method is demonstrated by synthesizing inverse opals displaying fluorescence, chirality, upconversion, second harmonic generation, and third harmonic generation. This economical and versatile fabrication method will facilitate research on inverse opals in general and on linear and nonlinear optical effects in 3D photonic crystals specifically. The relative ease of synthesis and wide variety of resulting materials will help the characterization and improvement of existing anomalous dispersion effects in these structures, while providing a platform for the discovery and demonstration of novel effects.