2011
DOI: 10.1109/taes.2011.6034680
|View full text |Cite
|
Sign up to set email alerts
|

Efficient Velocity Filter Implementations for Dim Target Detection

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
6
0
1

Year Published

2014
2014
2024
2024

Publication Types

Select...
9

Relationship

0
9

Authors

Journals

citations
Cited by 36 publications
(8 citation statements)
references
References 16 publications
0
6
0
1
Order By: Relevance
“…При параллельном подходе анализ спектрального состава структурной текстуры выполняют одновременно в нескольких частотных полосах. В работе [6] с использованием такого подхода проводилась обработка объектов, рассеянных по изображению. В результате были снижены вычислительные затраты и повышена оперативность обработки изображений [7].…”
Section: анализ литературных источников и постановка проблемыunclassified
“…При параллельном подходе анализ спектрального состава структурной текстуры выполняют одновременно в нескольких частотных полосах. В работе [6] с использованием такого подхода проводилась обработка объектов, рассеянных по изображению. В результате были снижены вычислительные затраты и повышена оперативность обработки изображений [7].…”
Section: анализ литературных источников и постановка проблемыunclassified
“…Since the exact target velocity is unknown, a velocity filter bank is used to cover the possible target velocities, and the space should be close enough to achieve a specified maximum SNR loss due to mismatch. is approach could result in a large number of filters required; hence, it will increase the computational complexity [20]. Besides, it cannot separate some targets with very close velocities; such scenario appears in the following experimental data.…”
Section: Introductionmentioning
confidence: 99%
“…is work mainly focuses on the tracking of the time-Doppler and time-azimuth traces for targets in sight; however, the propagation environment, including the sea, land, and ionospheric propagation [10][11][12], is extremely complicated, which leads to a challenging problem due to unknown and varying number of multitarget, model mismatch, lower signal-to-noise ratio (SNR), hybrid clutter, severe breaking points, intersecting traces, etc. Typical TBD strategies include Kalman filter (KF) [13,14], Hough transform (HT) [15][16][17], velocity filtering (VF) [18][19][20][21], particle filtering (PF) [22][23][24][25], dynamic programming (DP) [26][27][28][29][30], and Greedy algorithm [31]. eir basic concept, possible advantages, and limitation for application related to this work are summarized as follows:…”
Section: Introductionmentioning
confidence: 99%
“…The tracking and isolation of moving objects with a specific range of speed are a challenging research topic in the field of automotive application [28][29][30][31]. To cope with this issue, velocity filters have been used in the past for localizing and monitoring moving objects in image sequences or otherwise 3D imagery [32][33][34].…”
Section: Introductionmentioning
confidence: 99%