Design codes and standards rely on generalised target reliability indices. It is unclear, however, whether these indices are applicable to the specific risk-profile of marine structures. In this study, target reliability indices for quay walls were derived from various risk acceptance criteria, such as economic optimisation, individual risk (IR), societal risk (SR), the life quality index (LQI) and the social and environmental repercussion index (SERI). Important stochastic design variables in quay wall design, such as retaining height, soil strength and material properties, are largely time-independent, whereas other design variables are time-dependent. The extent to which a reliability problem is time variant affects the present value of future failure costs and the associated reliability optimum. A method was therefore developed to determine the influence of time-independent variables on the development of failure probability over time. This method can also be used to evaluate target reliability indices of other civil and geotechnical structures. The target reliability indices obtained for quay walls depend on failure consequences and marginal costs of safety investments. The results were used to elaborate the reliability framework of ISO 2394, and associated reliability levels are proposed for various consequence classes. The insights acquired were used to evaluate the acceptable probability of failure for different types of quay walls.