Einstein-Cartan theory is an extension of the standard formulation of general relativity characterized by a nonvanishing torsion. The latter is sourced by the matter fields via the spin tensor, and its effects are expected to be important at very high spin densities. In this work, we analyze in detail the physics of Einstein-Cartan theory with Dirac and Maxwell fields minimally coupled to the spacetime torsion. This breaks the Uð1Þ gauge symmetry, which is suggested by the possibility of a torsion-induced phase transition in the early Universe. The resulting Dirac-like and Maxwell-like equations are nonlinear with self-interactions as well as having fermion-boson nonminimal couplings. We discuss several cosmological aspects of this theory under the assumption of randomly oriented spin densities (unpolarized matter), including bounces, acceleration phases, and matter-antimatter asymmetry in the torsion era, as well as latetime effects such as the generation of an effective cosmological constant, dark energy, and future bounces within cyclic solutions.