We discuss the development of electrode surfaces modified with nanostructures for the electrochemical detection of contaminants of environmental concern (CECs) in the environment. The CECs are found in substances we all use in our daily lives such as pharmaceuticals, pesticides, flame retardants, personal care products, and so on. These contaminants pose a threat to human and environmental wellbeing, hence the need for effective methods for the fast and sensitive detection of these contaminants in our ecosystems. We describe the different electrochemical techniques researchers have used in the past for the detection of these pollutants in different environmental matrices. We survey the nanomaterials used to modify the electrodes used such as nanoparticles, nanowires, graphene, nanotubes and others used by researchers to detect these pollutants. The sensitivity of each approach is covered for numerous examples and nanomaterial-modified electrodes typically offer superior performance over more standard electrodes. We review the properties of these modifiers that make them good for the job and we looked at directions that researchers can pursue to further improve the sensitivity and selectivity of these modified electrodes.