We have investigated the unique interface states (NI) generated by NO annealing at the SiO2/SiC interfaces by low-temperature conductance measurements, which is more suitable for characterization of very fast interface states than high-frequency conductance measurements at room temperature. Although only a part of the NI states can be evaluated by measurements at room temperature, the whole picture of the NI states, especially near the conduction band edge (0.07 eV ≤ EC−ET), has been revealed by the low temperature measurements. The NI peak was present at the interface even without NO annealing. The NI density increased with NO annealing temperature. The NI density at the energy levels shallower than 0.2 eV exceeded 1012 cm−2eV−1 after NO annealing. The capture cross section of the NI states is uniquely larger than that of conventional interface states.