An earlier paper showed that it is possible to write down new SUSY Actions in which it is not possible to define a Supersymmetry Charge. SUSY is defined in these new Actions by the fact that they satisfy Master Equations. The new SUSY Actions are very easy to write down. One simply takes a Chiral SUSY Action, coupled to Gauge and other Chiral Multiplets, and even Supergravity, if desired. Then one creates a new Action from this by exchanging all or part of the Scalar Field S for a new Zinn Source J, and the corresponding part of the Zinn Source Γ for a new Antighost Field η. Since the original Action satisfies a Master Equation, this exchange guarantees that the new Action will satisfy the new Master Equation. As was shown in the earlier paper, the new multiplets have fewer bosonic degrees of freedom than fermionic degrees of freedom. This is possible because they do not have a Supercharge.The resulting new SSM has no need for Squarks or Sleptons. It does not need spontaneous breaking of SUSY, so that the cosmological constant problem does not arise (at least at tree level). It mimics the usual non-supersymmetric Standard Model very well, and the absence of large flavour changing neutral currents is natural. There is no need for a hidden sector, or a messenger sector, or explicit 'soft' breaking of SUSY. Spontaneous Gauge Symmetry Breaking from SU (3) × SU (2) × U (1) to SU (3) × U (1) implies the existence of two new very heavy Higgs Bosons with mass 13.4 TeV, slightly smaller than the energy of the LHC at 14 TeV. There is also a curious set of Gauginos and Higgsinos which have exactly the same masses as the Higgs and Gauge Bosons. These do not couple to the Quarks and Leptons, except through the Higgs and Gauge