Stokes parameters are a standard tool in quantum optics. They involve averaged intensities at exits of polarizers. If the overall measured intensity fluctuates, as e.g. for states with undefined photon numbers, the instances of its increased value contribute more to the parameters. One can introduce normalized quantum Stokes operators. Operationally, for a given single run of the experiment, their values are differences of measured intensities (or photon numbers) at the two exits of a polarizer divided by their sum. Effects of intensity fluctuations are removed. Switching to normalized Stokes operators results in more sensitive entanglement conditions. We also show a general method of deriving an entanglement indicator for optical fields which use polarization correlations, which starts with any two-qubit entanglement witness. This allows to vastly expand the family of such indicators.