P-type thin-film transistors (TFTs) using room temperature sputtered SnOx (x<2) as a transparent oxide semiconductor have been produced. The SnOx films show p-type conduction presenting a polycrystalline structure composed with a mixture of tetragonal β-Sn and α-SnOx phases, after annealing at 200 °C. These films exhibit a hole carrier concentration in the range of ≈1016–1018 cm−3; electrical resistivity between 101–102 Ω cm; Hall mobility around 4.8 cm2/V s; optical band gap of 2.8 eV; and average transmittance ≈85% (400 to 2000 nm). The bottom gate p-type SnOx TFTs present a field-effect mobility above 1 cm2/V s and an ON/OFF modulation ratio of 103.
We investigated the visible photon accelerated negative bias instability (NBI) in amorphous In–Ga–Zn–O (a-IGZO) thin film transistor (TFT). As reported in previous works, the rigid shift in transfer curves with insignificant changes in field-effect mobility and subthreshold swing was observed. On the other hand, there is substantial change in capacitance-voltage characteristics caused by created subgap states. The suggested nature of created states is the ionized oxygen vacancy (VO2+) by the combination of visible light and negative bias. The generated VO2+ states enhance the NBI under illumination as increased deep hole trapping centers. Furthermore, the photoexcitation of VO to stable VO2+ yields excess free carriers in conduction band. The increased carrier density also enhances the negative shift in turn-on voltage of a-IGZO TFT.
Copper oxide (Cu2O) thin films were used to produce bottom gate p-type transparent thin-film transistors (TFTs). Cu2O was deposited by reactive rf magnetron sputtering at room temperature and the films exhibit a polycrystalline structure with a strongest orientation along (111) plane. The TFTs exhibit improved electrical performance such as a field-effect mobility of 3.9 cm2/V s and an on/off ratio of 2×102.
Transparent flexible fluorine-doped indium zinc oxide (IZO:F) thin-film transistors (TFTs) were demonstrated using the spin-coating method of the metal fluoride precursor aqueous solution with annealing at 200°C for 2 hrs on polyethylene naphthalate films. The proposed thermal evolution mechanism of metal fluoride aqueous precursor solution examined by thermogravimetric analysis and Raman spectroscopy can easily explain oxide formation. The chemical composition analysed by XPS confirms that the fluorine was doped in the thin films annealed below 250°C. In the IZO:F thin films, a doped fluorine atom substitutes for an oxygen atom generating a free electron or occupies an oxygen vacancy site eliminating an electron trap site. These dual roles of the doped fluorine can enhance the mobility and improve the gate bias stability of the TFTs. Therefore, the transparent flexible IZO:F TFT shows a high mobility of up to 4.1 cm2/V·s and stable characteristics under the various gate bias and temperature stresses.
Recently, hafnia ferroelectrics with two spontaneous polarization states have attracted marked attention for non-volatile, super-steep switching devices, and neuromorphic application due to their fast switching, scalability, and CMOS compatibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.