The crustacean, Artemia franciscana, displays a complex life history in which embryos either arrest development and undertake diapause as cysts or they develop into swimming nauplii. Diapause entry is preceded during embryogenesis by the synthesis of specific molecular chaperones, namely the small heat shock proteins p26, ArHsp21, and ArHsp22, and the ferritin homolog, artemin. Maximal synthesis of diapause-specific molecular chaperones is dependent on the transcription factor, heat shock factor 1 (Hsf1), found in similar amounts in cysts and nauplii newly released from females. This investigation was performed to determine why, if cysts and nauplii contain comparable amounts of Hsf1, only cyst-destined embryos synthesize diapausespecific molecular chaperones. Quantification by qPCR and immunoprobing of Western blots, respectively, demonstrated that hsf1 mRNA and Hsf1 peaked by day 2 post-fertilization in embryos that were developing into cysts and then declined. hsf1 mRNA and Hsf1 were present in nauplii-destined embryos on day 2 post-fertilization, but in much smaller amounts than in cystdestined embryos, and they increased in quantity until release of nauplii from females. Immunofluorescent staining revealed that the amount of Hsf1 in nuclei was greatest on day 4 post-fertilization in cyst-destined embryos but could not be detected in nuclei of nauplius-destined embryos at this time. The differences in quantity and location of Hsf1 explain why embryos fated to become cysts and eventually enter diapause synthesize p26, ArHsp21, ArHsp22, and artemin, whereas nauplius-destined embryos do not produce these molecular chaperones.