The chemotactic potential of SXWS peptides and the components of the extracellular domain of cytokine receptors were investigated in Tetrahymena as a functional index of substitution with different amino acids in the position 'X' of the tetrapeptide. Data obtained demonstrate that position X plays a special determining role in the ligand, SEWS and STWS possess extremely strong chemoattractant ability, and aromatic amino acids result in chemorepellent ligands. Diverse effects of structurally related molecules, for example, SNWS-SDWS, demonstrate a highly sensitive discrimination potential in the applied model system. Physicochemical characteristics (hydropathy, residue size, and solvent-exposed area) of the amino acids were correlated with the chemotactic activity. Data obtained by computer-assisted conformation analysis of SXWS peptides and the highly overlapping chemotactic effects of the investigated SXWS peptides as well as the presence of the amino acids in the 'X' position indicate that member 'X' of the SXWS sequence performs a special role in interactions with the chemotaxis receptors in the membrane.