In order to apply to stretchable electronics packaging, locally stiffness-variant stretchable substrates consisting of island structure were fabricated by combining two polydimethylsiloxane elastomers of different stiffnesses and their elastic moduli were characterized as a function of the width of the high-stiffness island. The low-stiffness substrate matrix and the embedded high-stiffness island of the stretchable substrate were formed by using Dragon Skin 10 of the elastic modulus of 0.09 MPa and Sylgard 184 of the elastic modulus of 2.15 MPa, respectively. A stretchable substrate was fabricated to be a configuration of 6.5-cm length, 0.4-cm thickness, and 2.5-cm width, in which a high-stiffness Sylgard 184 island, of 4-cm length, 0.2-cm thickness, and 0.5~1.5-cm width, was embedded. The elastic modulus of a stretchable substrate was increased from 0.09 MPa to 0.16 MPa by incorporating the Sylgard 184 island of 0.5-cm width to Dragon Skin 10 substrate matrix. The elastic modulus was further improved to 0.18 MPa and 0.2 MPa with increasing the Sylgard 184 island width to 1.0 cm and 1.5 cm, which were in good agreement with values estimated by combining the Voigt structure of isostrain and the Reuss structure of isostress.