The structures of the crosslinks in supramolecular polymer networks play an important role on their properties and functions. Herein, emissive metallacages are used as crosslinks to prepare metallacage-cored polyurethanes. The mechanical properties including storage modulus, toughness, Young's modulus and breaking strength of polymers are greatly enhanced with the increase of crosslinking densities. Moreover, such polymers not only exhibit good fluorescence in the solid state, but also show self-healing and shape memory properties owing to the dynamic reversible non-covalent bonds in their structures. This study not only offers a convenient strategy to prepare metallacage-crosslinked networks, but also explores their applications as selfhealing and shape memory materials, which will promote the study of metallacage-cored supramolecular networks as smart materials.