Speech emotion recognition is a substantial component of natural language processing (NLP). It has strict requirements for the effectiveness of feature extraction and that of the acoustic model. With that in mind, a Heterogeneous Parallel Convolution Bi-LSTM model is proposed to address the challenges. It consists of two heterogeneous branches: the left one contains two dense layers and a Bi-LSTM layer, while the right one contains a dense layer, a convolution layer, and a Bi-LSTM layer. It can exploit the spatiotemporal information more effectively, and achieves 84.65%, 79.67%, and 56.50% unweighted average recalls on the benchmark databases EMODB, CASIA, and SAVEE, respectively. Compared with the previous research results, the proposed model achieves better performance stably.