Developing high energy density lithium secondary batteries is pivotal for satisfying the increasing demand in advanced energy storage systems. Lithium metal batteries (LMBs) have attracted growing attention due to their high theoretical capacity, but the lithium dendrites issue severely fetter their real‐world applications. It is found that reducing anion migration near lithium metal prolongs the nucleation time of dendrites, meanwhile, promoting homogeneous lithium deposition suppresses the dendritic growth. Thus, regulating ion transport in LMBs is a feasible and effective strategy for addressing the issues. Based on this, a functional separator is developed to regulate ion transport by utilizing a well‐designed metal‐organic frameworks (MOFs) coating to functionalize polypropylene (PP) separator. The well‐defined intrinsic nanochannels in MOFs and the negatively charged gap channels both restricts the free migration of anions, contributing to a high Li+ transference number of 0.68. Meanwhile, the MOFs coating with uniform porous structure promotes homogeneous lithium deposition. Consequently, a highly‐stable Li plating/stripping cycling for over 150 h is achieved. Furthermore, implementation of the separator enables LMBs with high discharge capacity, prominent rate performance and good capacity retention. This work is anticipated to aid developement of dendrite‐free LMBs by utilizing advanced separators with ion transport management.
This paper considers an application of model predictive control to automotive air conditioning (A/C) system in future connected and automated vehicles (CAVs) with battery electric or hybrid electric powertrains. A control-oriented prediction model for A/C system is proposed, identified, and validated against a higher fidelity simulation model (CoolSim). Based on the developed prediction model, a nonlinear model predictive control (NMPC) problem is formulated and solved online to minimize the energy consumption of the A/C system. Simulation results illustrate the desirable characteristics of the proposed NMPC solution such as being able to enforce physical constraints of the A/C system and maintain cabin temperature within a specified range. Moreover, it is shown that by utilizing the vehicle speed preview and through coordinated adjustment of the cabin temperature constraints, energy efficiency improvements of up to 9% can be achieved.
A morphology-controlled molten salt route was developed to synthesize porous spherical LaMnO3 and cubic LaMnO3 nanoparticles using the as-prepared porous Mn2O3 spheres as template. The porous LaMnO3 spheres with an average pore size of about 34.7 nm and the cubic LaMnO3 nanoparticles with a good dispersion were confirmed by scanning electron microscope, transmission electron microscope, and N2 adsorption-desorption measurements. The mechanism of morphological transformation from the porous spherical structure to the cubic particle in the molten salt was proposed. The porous spherical LaMnO3 and cubic LaMnO3 catalysts exhibited high catalytic performance for the combustion of toluene, and the latter performed better than the former. Under the conditions of toluene/oxygen molar ratio = 1/400 and space velocity = 20,000 h(-1), the temperature required for 10, 50, and 90% toluene conversion was 110, 170, and 220 °C over the cubic LaMnO3 catalyst, respectively. Based on the results of X-ray photoelectron spectroscopic and hydrogen temperature-programmed reduction characterization, we deduce that the higher surface Mn(4+)/Mn(3+) molar ratio and better low-temperature reducibility enhanced the catalytic performance of cubic LaMnO3. Taking the facile morphology-controlled synthesis and excellent catalytic performance into consideration, we believe that the well-defined morphological LaMnO3 samples are good candidate catalytic materials for the oxidative removal of toluene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.