We perform an ensemble of N-body simulations with 2048 3 particles for 101 flat wCDM cosmological models sampled based on a maximin-distance Sliced Latin Hypercube Design. By using the halo catalogs extracted at multiple redshifts in the range of z = [0, 1.48], we develop Dark Emulator, which enables fast and accurate computations of the halo mass function, halo-matter cross-correlation, and halo auto-correlation as a function of halo masses, redshift, separations and cosmological models, based on the Principal Component Analysis and the Gaussian Process Regression for the large-dimensional input and output data vector. We assess the performance of the emulator using a validation set of N-body simulations that are not used in training the emulator. We show that, for typical halos hosting CMASS galaxies in the Sloan Digital Sky Survey, the emulator predicts the halo-matter cross correlation, relevant for galaxy-galaxy weak lensing, with an accuracy better than 2% and the halo auto-correlation, relevant for galaxy clustering correlation, with an accuracy better than 4%. We give several demonstrations of the emulator. It can be used to study properties of halo mass density profiles such as the mass-concentration relation and splashback radius for different cosmologies. The emulator outputs can be combined with an analytical prescription of halo-galaxy connection such as the halo occupation distribution at the equation level, instead of using the mock catalogs, to make accurate predictions of galaxy clustering statistics such as the galaxy-galaxy weak lensing and the projected correlation function for any model within the wCDM cosmologies, in a few CPU seconds. Subject headings: large-scale structure of the universe -numerical simulations -machine learning