Warping of layered wood-based panels is still a challenging problem in the development of thin engineered wood products. Wood as an anisotropic and hydrophilic material tends to change its volume and mechanical properties with changing moisture content. Besides the wood components, also the mechanical properties of certain adhesives are sensitive to moisture changes. A moisture load onto the adhered wood is resulting in different stress and strain states between the adherends. It is expected that adhesives with different moisture-related properties participate differently to this interaction. To observe an adhesive-related warping, thin spruce/HDF (Picea abies and high-density fibreboard) bi-layers with identical material geometries were manufactured under laboratory conditions, using different wood adhesive systems, which are currently used in furniture and flooring industry [polyurethane (PUR), emulsion polymer isocyanate (EPI), polyvinyl acetate (PVAc), urea formaldehyde (UF) and ultra-low emitting formaldehyde amino adhesive (ULEF)]. The bi-layers were exposed to certain relative humidity conditions, and the resulting deformation was measured with a high-precision laser distance detector. Moisturedependent warping of the bi-layers was obtained in relation to the used adhesive systems. As a result of the study, it can be shown that initial warping after panel manufacturing strongly depends on the adhesive curing characteristics and, especially, on the amount of water that is released into the wood adherend. For the post-setting panel warping, a differentiation into two adhesive groups became visible: rigid and flexible adhesives. Rigid adhesives (UF and ULEF) showed a higher degree of warping compared to the group of flexible adhesives (PUR, EPI and PVAc).