Thermochemical heat-storage applications, based on the reversible endo-/exothermic hydration reaction of salts, are intensively investigated to search for compact heat-storage devices. To achieve a truly valuable storage system, progressively complex salts are investigated. For these salts, the equilibrium temperature and pressure conditions are not always easy to predict. However, these conditions are crucial for the design of thermochemical heatstorage systems. A biased grand-canonical Monte Carlo (GCMC) tool is developed, enabling the study of equilibrium conditions at the molecular level. The GCMC algorithm is combined with reactive force field molecular dynamics (ReaxFF), which allows bond formation within the simulation. The Weeks−Chandler− Andersen (WCA) potential is used to scan multiple trial positions for the GCMC algorithm at a small cost. The most promising trial positions can be selected for recomputation with the more expensive ReaxFF. The developed WCA−ReaxFF−GCMC tool was used to study the hydration of MgCl 2 •nH 2 O. The simulation results show a good agreement with experimental and thermodynamic equilibriums for multiple hydration levels. The hydration shows that water, present at the surface of crystalline salt, deforms the surface layers and promotes further hydration of these deformed layers. Additionally, the WCA−ReaxFF−GCMC algorithm can be used to study other, non-TCM-related, reactive sorption processes.