Classical planning problems are defined using some specification language, such as PDDL. The domain expert defines action schemas, objects, the initial state, and the goal. One key aspect of PDDL is that the set of objects cannot be modified during plan execution. While this is fine in many domains, sometimes it makes modeling more complicated. This may impact the performance of planners, and it requires the domain expert to bound the number of required objects beforehand, which can be a challenge. We introduce an extension to the classical planning formalism, where action effects can create and remove objects. This problem is semi-decidable, but it becomes decidable if we can bound the number of objects in any given state, even though the state space is still infinite. On the practical side, we extend the Powerlifted planning system to support this PDDL extension. Our results show that this extension improves the performance of Powerlifted while supporting more natural PDDL models.