2015
DOI: 10.1007/s10278-015-9809-1
|View full text |Cite
|
Sign up to set email alerts
|

Endowing a Content-Based Medical Image Retrieval System with Perceptual Similarity Using Ensemble Strategy

Abstract: Content-based medical image retrieval (CBMIR) is a powerful resource to improve differential computer-aided diagnosis. The major problem with CBMIR applications is the semantic gap, a situation in which the system does not follow the users' sense of similarity. This gap can be bridged by the adequate modeling of similarity queries, which ultimately depends on the combination of feature extractor methods and distance functions. In this study, such combinations are referred to as perceptual parameters, as they i… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
6
0
3

Year Published

2016
2016
2021
2021

Publication Types

Select...
3
3
1

Relationship

0
7

Authors

Journals

citations
Cited by 19 publications
(9 citation statements)
references
References 37 publications
0
6
0
3
Order By: Relevance
“…Scale of database Studies small general jpegs: [22]; microscopy: [23]. 2D medium mammograms: [24]; x-rays: [25], [26]; microscopy: [27]- [29]; mixed: [30]. Uni-modal large mammograms: [31], [32]; x-rays: [33]- [36].…”
Section: Type Of Database Data Typementioning
confidence: 99%
See 1 more Smart Citation
“…Scale of database Studies small general jpegs: [22]; microscopy: [23]. 2D medium mammograms: [24]; x-rays: [25], [26]; microscopy: [27]- [29]; mixed: [30]. Uni-modal large mammograms: [31], [32]; x-rays: [33]- [36].…”
Section: Type Of Database Data Typementioning
confidence: 99%
“…Several retrieval studies have employed medium-to largescale subsets of uni-modal/cue image repositories that are available on the web. Among the found references [24], [31], [32] exploited mammogram ROIs for breast cancer detection from the Digital Database for Screening Mammography (DDSM) repository 9 ; [26], [33]- [36] utilized X-rays from the IRMA repository; [25] used X-rays from the second National Health and Nutrition Examination Survey (NHANES-II) repository 10 to diagnose vertebrae irregularity; and [45] 3 https://ganymed.imib.rwth-aachen.de/irma/ 4 https://imaging.nci.nih.gov/ncia/ 5 http://adni.loni.usc.edu/ 6 http://www.oasis-brains.org/ 7 http://www.imageclef.org/ 8 https://promise12.grand-challenge.org/ 9 http://marathon.csee.usf.edu/Mammography/Database.html 10 https://www.cdc.gov/nchs/nhanes/nhanesii.htm employed CTs from the Lung Image Database Consortium (LIDC) collection 11 for pulmonary nodule retrieval.…”
Section: B Medium-large Scale Uni-modal/cue Databasesmentioning
confidence: 99%
“…A CBIR tem sido descrita como uma das ferramentas computacionais mais promissoras, pois ela potencialmente pode auxiliar o processo de decisão clínica, recuperando em grandes bases de dados casos similares já previamente diagnosticados (MA et al, 2017;BEDO et al, 2016;FERREIRA JUNIOR;OLIVEIRA, 2015;BUGATTI et al, 2014). Sistemas CBIR podem ser muito úteis em um ambiente clínico real, pois podem auxiliar o radiologista na tomada de decisão diagnóstica, ou aumentar sua certeza, valendo-se de um modelo de decisão baseada em exemplo .…”
Section: Motivaçãounclassified
“…A importância da CBIR como ferramenta de auxílio computadorizado ao processo clínico de interpretação de imagens e diagnóstico de doenças vem crescendo com o passar dos anos (TRAINA et al, 2017;FERREIRA JUNIOR;BEDO et al, 2016;SILVA et al, 2013;KUMAR et al, 2013). Neste capítulo, foi apresentada a avaliação de um algoritmo de recuperação de imagens baseada em atributos de textura e nitidez de borda de nódulos pulmonares presentes em imagens de TC.…”
Section: Discussão E Considerações Específicasunclassified
See 1 more Smart Citation