The presence of coatings and surface topography play an important role in the tribological performance of sliding components. Depending on the coating used, it is possible to reduce friction and/or reduce wear. However, although there may be low friction and wear‐resistant coatings suitable for use in pistons, some coatings may hinder the tribological performance by changing the lubrication regime or by preventing additives from their intended function through chemical mechanisms. In this work, piston skirt segments extracted from a commercial aluminium alloy piston were coated with a diamond‐like carbon (DLC) coating, a graphite–resin coating or a nickel–polytetrafluoroethylene (Ni–PTFE) coating and were tribologically tested using a reciprocating laboratory test rig against commercial grey cast iron liner segments. The tribological tests used commercial synthetic motor oil at a temperature of 120 °C with a 20 mm stroke length at a reciprocating frequency of 2 Hz. Results showed that the graphite–resin coating, although it may serve as a good break‐in coating, wears rapidly. The Ni–PTFE coating showed friction reduction, whereas the DLC coating wore off quickly due to its small thickness. Furthermore, the higher hardness of the DLC coating relative to the cast iron liner surface led to pronounced changes on the liner counterface by polishing. In contrast with the uncoated piston skirt segments, all of the coatings prevented the formation of a visible tribochemical film on the cast iron surface. Copyright © 2012 John Wiley & Sons, Ltd.