In the recent years, nanotechnology has attained much attention in the every field of science. The synthesis, characterisation and applications of metallic nanoparticles (MNPs) have become an important branch of nanotechnology. In the current study, MNPs were synthesised through polyols process and applied in vitro to study their effect on medicinally important plant : Artemisia absinthium. The current study strives to check the effect of MNPs, i.e., Ag, Cu and Au on seed germination, root and shoot length, seedling vigour index (SVI) and biochemical profiling in A. absinthium. The seeds were inoculated on MS medium supplemented with various combinations of MNPs suspension. The seed germination was greatly influenced upon the application of MNPs and was recorded highest for the silver nanoparticles (AgNPs) suspensions. The best result for seed germination (98.6%) was obtained in MS medium supplemented with AgNPs as compared to control (92.9%) and other nanoparticles, i.e., copper (69.6%) and gold (56.5%), respectively, after 35 days of inoculation. Significant results were obtained for root length, shoot length and SVI in response to application of AgNPs as compared to copper nanoparticles (CuNPs) and gold nanoparticles (AuNPs). These nanoparticles (NPs) could induce stress in plants by deploying the endogenous mechanism. In response to these stresses, plants produce various defence compounds. Total phenolic content (TPC) and total flavonoid content (TFC) were significant in the MS medium supplemented with AgNPs as compared to other NPs, while DPPH radical scavenging assay (RSA) was highest in AuNPs treated plantlets. The MNPs showed higher toxicity level and enhanced secondary metabolites production, total phenolic content, total flavonoid content, antioxidant activity, superoxide dismutase (SOD) activity and total protein content.