Wide-bandgap perovskite solar cells (WBG-PSCs), when partnered with Si bottom cells in tandem configuration, can provide efficiencies up to 44%; yet, the development of stable, efficient, and scalable WBG-PSCs is required. Here, the utility of the hybrid evaporation-solution method (HESM) is investigated to meet these demanding requirements via its unique advantages including ease of control and reproducibility. A PbI 2 /CsBr layer is co-evaporated followed by coating of organic-halide solutions in a green solvent. Bandgaps between 1.55-1.67 eV are systematically screened by varying CsBr and MABr content. Champion efficiencies of 21.06% and 20.35% in cells and 19.83% and 18.73% in mini-modules (16 cm 2 ) for perovskites with 1.64 and 1.67 eV bandgaps are achieved, respectively. Additionally, 18.51%-efficient semi-transparent WBG-PSCs are implemented in 4T perovskite/bifacial silicon configuration, reaching a projected power output of 30.61 mW cm −2 based on PD IEC TS 60904-1-2 (BiFi200) protocol. Despite similar bandgaps achieved by incorporating Br via MABr solution and/or CsBr evaporation, PSCs having a perovskite layer without MABr addition show significantly higher thermal and moisture stability. This study proves scalable, highperformance, and stable WBG-PSCs are enabled by HESM, hence their use in tandems and in emerging applications such as indoor photovoltaics are now within reach.