GaN-based solar cells with Mn-doped absorption layer grown by metal-organic vapor-phase epitaxy were investigated. The transmittance spectrum and the spectral response showed the presence of an Mn-related band absorption property. Power-dependent, dual-light excitation, and lock-in amplifier techniques were performed to confirm if the two-photon absorption process occurred in the solar cells with Mn-doped GaN absorption layer. Although a slight decrease in an open circuit voltage was observed, a prominent increase in the short circuit current density resulted in a significant enhancement of the overall conversion efficiency. Under one-sun air mass 1.5 G standard testing condition, the conversion efficiency of Mn-doped solar cells can be enhanced by a magnitude of 5 times compared with the cells without Mn-doped absorption layer.