2D materials have played an important role in electronics, sensors, optics, electrocatalysis, and energy storage. Many methods for the preparation of 2D materials have been explored. It is crucial to develop a high‐yield, rapid, and low‐temperature method to synthesize 2D materials. A general, fast (5 min), and low‐temperature (≈100 °C) salt (CoCl2·6H2O)‐templated method is proposed to prepare series of 2D metal oxides/oxychlorides/hydroxides in large scale, such as MoO3, SnO2, SiO2, BiOCl, Sb4O5Cl2, Zn2Co3(OH)10 2H2O, and ZnCo2O4. The as‐synthesized 2D materials possess an ultrathin feature (2–7 nm) and large aspect ratios. Additionally, these 2D metal oxides/oxychlorides/hydroxides exhibit good electrochemical properties in energy storage (lithium/sodium‐ion batteries) and electrocatalysis (hydrogen/oxygen evolution reaction).