With deterministic differential equations, we can understand the dynamics of tumor-immune interactions. Cancer-immune interactions can, however, be greatly disrupted by random factors, such as physiological rhythms, environmental factors, and cell-to-cell communication. The present study introduces a stochastic differential model in infectious diseases and immunology of the dynamics of a tumor-immune system with random noise. Stationary ergodic distribution of positive solutions to the system is investigated in which the solution fluctuates around the equilibrium of the deterministic case and causes the disease to persist stochastically. In some conditions, it may be possible to attain infection-free status, where diseases die out exponentially with a probability of one. Some numerical simulations are conducted with the Euler–Maruyama scheme in order to verify the results. White noise intensity is a key factor in treating infectious diseases.