The ongoing transition of low voltage (LV) power grids towards active systems requires novel evaluation and testing concepts, in particular for realistic testing of devices. Power Hardware-in-the-Loop (PHIL) evaluations are a promising approach for this purpose. This paper presents preliminary investigations addressing the systematic design of PHIL applications and their applicable stability mechanisms and gives a detailed review of the related work. A requirement analysis for emulation of grid situations demanding system services is given and the realization of a PHIL setup is demonstrated in a residential scenario, comprising a hybrid electrical energy storage system (HESS).