Abstract. Cancer stem cells (CSCs), which are pluripotent and self-renewable, contribute to the initiation and metastasis of cancer, and are responsible for resistance to chemotherapy and radiation. Pancreatic ductal adenocarcinoma (PDAC) is an aggressive type of cancer that is associated with a high incidence of distant metastasis and recurrence. Sphere formation reveals cell proliferation under nonadherent conditions and is commonly used to identify CSCs; measurements of the number, area and volume of the spheres are used to estimate stemness of PDAC cells. However, detailed morphological analysis of such spheres has not been performed. The aim of the present study was to examine the morphology of spheres isolated from PANC-1 human pancreatic cancer cells via scanning electron microscopy (SEM) and transmission electron microscopy (TEM). PANC-1 cells formed round to irregular oblong spheres within 1 week following seeding in ultra-low-attachment plates. These spheres exhibited higher levels of expression of CSC markers, including nestin, sex determining region Y-box 2, and CD44 containing variant exon 9, compared with adherent cells. SEM analysis revealed that the spheres exhibited a grape-like appearance, harboring cancer cells with smooth or rough surfaces. Similarly, TEM analysis detected cancer cells with varying surface types within the spheres: Those with smooth surfaces, irregular large protrusions, protrusions and a small number of microvilli, and those with many microvilli throughout the entire cell surface. These morphological differences among cancer cells may be indicative of different stages in the differentiation process, from CSCs to non-CSCs, within the spheres.