Nanoporous silicon oxide templates formed by swift heavy ion tracks technology have been investigated. The influence of the heavy ion characteristics, such as type of ion, energy, stopping power and irradiation fluence on the pore properties of the silicon oxide templates, has been studied. Furthermore, the process of pore formation by chemical etching with hydrofluoric acid has been thoroughly investigated by assessing the effect of etchant concentration and etching time. The outcome of this investigation enables us to have precise control over the resulting geometry of nanopores arrays. As a result, guidelines for the creation of a-SiO2/Si templates with tunable parameters and general recommendations for their further application are presented.