The ethylene glycol oxidation reaction on nickel and ruthenium modified palladium nanocatalysts was investigated with electrochemical, spectroelectrochemical, and chromatographic methods. These carbon-supported materials, prepared by a revisited polyol approach, exhibited high activity towards the ethylene glycol electrooxidation in alkaline medium. Electrolysis coupled with high performance liquid chromatography/mass spectrometry (HPLC-MS) and in situ Fourier transform infrared spectroscopy (FTIRS) measurements allowed us to determine the different compounds electrogenerated in the oxidative conversion of this two-carbon molecule. High value-added products such as oxalate, glyoxylate, and glycolate were identified in all electrolytic solutions, whereas glyoxylate was selectively formed at the Ru 45 @Pd 55 /C electrode surface. In situ FTIRS results also showed a decrease in the pH value in the thin layer near the electrode as a consequence of OH À consumption during the spectroelectrochemical experiments.