Concentrating solar power (CSP), also known as solar thermal electricity (STE), is increasing its deployment worldwide. One of the potential ways to decrease costs in CSP plants is the improvement of corrosion resistance between the heat transfer fluid (HTF) and storage materials, and the materials used for pipes, tanks, containers, and receivers. This paper assesses the literature on this topic (290 publications) through a bibliometric analysis, identifying the trends of the research, the topics of most interest to researchers, and literature gaps. Most documents are from Spain, Germany, and the United States of America. Results show that the most recent approaches for corrosion migration are selective coatings and the use of nanoparticles to reduce corrosiveness. The use of nitrates is changing to other salts such as chloride mixtures and potassium compounds. In addition, the techniques used to evaluate corrosion results are dominated by scanning electron microscopy (SEM), X-ray diffraction (XRD), and electrochemical testing, but new dynamic techniques are starting to be used, representing the biggest gap that needs to be filled for the testing of components such as solar receivers.