“…When selecting the best fit for input data, for each distribution type, BestFit first estimates parameters values using maximum‐likelihood estimators (MLEs) (Teimouri and Nadarajah, ; Asgharzadeh et al., ), then optimizes the parameters with the Levenberg–Marquardt method (Ueda and Yamashita, ), an algorithm that maximizes the goodness‐of‐fit between a data set and a distribution function. BestFit offers three goodness‐of‐fit tests: chi‐square (Adekpedjou et al., ), Kolmogorov–Smirnov (Wang et al., ; Lekomtcev et al., ), and Anderson–Darling (Coronel‐Brizio and Hernandez‐Montoya, ; Ashkar et al., ), and the function with the lowest goodness‐of‐fit values is considered as the best fit. In this article, chi‐square is adopted for goodness‐of‐fit measurement.…”