Glucokinase (GK) plays a key role in the control of blood glucose homeostasis. We identified a small molecule GK activator, compound A, that increased the glucose affinity and maximal velocity (V max ) of GK. Compound A augmented insulin secretion from isolated rat islets and enhanced glucose utilization in primary cultured rat hepatocytes. In rat oral glucose tolerance tests, orally administrated compound A lowered plasma glucose elevation with a concomitant increase in plasma insulin and hepatic glycogen. In liver, GK activity is acutely controlled by its association to the glucokinase regulatory protein (GKRP). In order to decipher the molecular aspects of how GK activator affects the shuttling of GK between nucleus and cytoplasm, the effect of compound A on GK-GKRP interaction was further investigated. Compound A increased the level of cytoplasmic GK in both isolated rat primary hepatocytes and the liver tissues from rats. Experiments in a cell-free system revealed that compound A interacted with glucose-bound free GK, thereby impairing the association of GK and GKRP. On the other hand, compound A did not bind to glucose-unbound GK or GKRPassociated GK. Furthermore, we found that glucose-dependent GK-GKRP interaction also required ATP. Given the combined prominent role of GK on insulin secretion and hepatic glucose metabolism where the GK-GKRP mechanism is involved, activation of GK has a new therapeutic potential in the treatment of type 2 diabetes.There are three key aspects of type 2 diabetes pathogenesis, which are the focus of current and future therapies: insulin resistance, defective insulin secretion, and increased hepatic glucose production. Glucokinase (GK) 2 is the predominant glucose phosphorylation enzyme in pancreatic -cells and hepatocytes. GK plays an important role as a glucose sensor for controlling plasma glucose homeostasis by enhancing insulin secretion from pancreatic -cells and glucose metabolism in the liver (1, 2), which provides rational expectations that enhancement of GK activity would be a novel therapeutic strategy for type 2 diabetes. Consistent with this rationale, recently discovered small molecule allosteric activators of GK have been demonstrated to have antidiabetic efficacy in rodents (3, 4).To investigate the mechanism of action of GK activators, the interaction between GK and glucokinase regulatory protein (GKRP) is a key aspect. It is well known that hepatic GK activity is modulated by the endogenous inhibitor, glucokinase regulatory protein (GKRP) (5-8). GK is localized in the nucleus as an inactive complex with GKRP at low glucose concentrations and is dissociated from the GK⅐GKRP complex and translocated to the cytoplasm at high glucose concentrations, which triggers glucose disposal (9). Modulators of the GK-GKRP interaction have been shown to enhance hepatic glucose disposal (7). We recently solved the co-crystal structure of hepatic GK complex with GK activator, in which GK undergoes a large conformational change between the active and inactive forms at diffe...