Standardized clinical diagnostic procedures cannot assess the functionality of the anatomical structures in sport-specific movement. Biomechanical screening is able to detect deficits but is not sufficiently and objectively precise with the current clinical examination tools including conventional imaging techniques. The fields of use of functional testing methods are versatile and range from injury prevention analysis, screening during rehabilitation phases up to the return-to-play decision. Using simple musculoskeletal function analysis it is difficult to assess the risk of injuries. The main advantage of instrumented 3D-motion analysis is its potential to generate objective, reliable and reproducible data with exact joint angles, muscle activity, as well as loading inside the joints during movement. These marker-based motion analysis procedures are more time-consuming and more cost intensive and necessitate in particular biomechanical and medical knowledge to assess the analytical data in terms of clinical relevance. In the absence of scientific studies on biomechanical analyses in professional sports, this study shows preliminary approaches to this topic.