Pyrethroid-treated bednets are the most promising available method of controlling malaria in the tropical world. Every e¡ort should be made to ¢nd methods of responding to, or preventing, the emergence of pyrethroid resistance in the Anopheles vectors. Some cases of such resistance are known, notably in An. gambiae in West Africa where the kdr type of resistance has been selected, probably because of the use of pyrethroids on cotton. Because pyrethroids are irritant to mosquitoes, laboratory studies on the impact of, and selection for, resistance need to be conducted with free-£ying mosquitoes in conditions that are as realistic as possible. Such studies are beginning to suggest that, although there is cross-resistance to all pyrethroids, some treatments are less likely to select for resistance than others are. Organophosphate, carbamate and phenyl pyrazole insecticides have been tested as alternative treatments for nets or curtains. Attempts have been made to mix an insect growth regulator and a pyrethroid on netting to sterilize pyrethroid-resistant mosquitoes that are not killed after contact with the netting. There seems to be no easy solution to the problem of pyrethroid resistance management, but further research is urgently needed.