2016
DOI: 10.1186/s13660-015-0954-3
|View full text |Cite
|
Sign up to set email alerts
|

Existence of an optimal size of a rigid inclusion for an equilibrium problem of a Timoshenko plate with Signorini-type boundary condition

Abstract: We study the contact problems for elastic plates with a rigid inclusion. We consider the case of frictionless contact between the rigid part of the plate and a rigid obstacle. The contact is modeled with the Signorini-type nonpenetration condition. The deformation of the transversely isotropic elastic part of the plate is described by the Timoshenko model. We analyze the dependence of solutions to the contact problems on the size of rigid inclusion. The existence of a solution to the optimal control problem is… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
4
0
4

Year Published

2017
2017
2022
2022

Publication Types

Select...
4
2

Relationship

1
5

Authors

Journals

citations
Cited by 6 publications
(8 citation statements)
references
References 23 publications
0
4
0
4
Order By: Relevance
“…Due to the presence of a rigid inclusion in the plate, restrictions of the functions describing displacements (W , w) and angles of rotation ψ to the curve β t satisfy a special kind of relations. We introduce the space which allows us to characterize the properties of a thin rigid inclusion [19],…”
Section: A Family Of Equilibrium Problemsmentioning
confidence: 99%
“…Due to the presence of a rigid inclusion in the plate, restrictions of the functions describing displacements (W , w) and angles of rotation ψ to the curve β t satisfy a special kind of relations. We introduce the space which allows us to characterize the properties of a thin rigid inclusion [19],…”
Section: A Family Of Equilibrium Problemsmentioning
confidence: 99%
“…. Условие взаимного непроникания противоположных берегов трещины без учета сил трения имеет вид [24]:…”
Section: рис 1 срединная плоскость пластиныunclassified
“…Начиная с 1990-х годов, начали активно разрабатываться задачи теории трещин с условиями непроникания противоположных берегов трещины [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17]. Используя вариационный подход, успешно исследован широкий круг задач о деформировании композитных тел, содержащих жесткие включения см., например, [18,19,20,21,22,23,24]. В частности, теория двумерных задач теории упругости с тонкими жесткими включениями и возможным отслоением предложена в [18].…”
unclassified
See 2 more Smart Citations