The tissue specificity of mouse mammary tumor virus (MMTV) expression is controlled by regulatory elements in the MMTV long terminal repeat (LTR). These regulatory elements include the hormone response element, located approximately between ؊200 and ؊75, as well as binding sites for NF-1, Oct-1 (OTF-1), and mammary gland enhancer factors. Naturally occurring MMTV deletion variants isolated from T-cell and kidney tumors, transgenic-mouse experiments with MMTV LTR deletions, and transient transfection assays with LTR constructs indicate that there are additional transcription regulatory elements, including a negative regulatory element (NRE), located upstream of the hormone response element. To further define this regulatory region, we have constructed a series of BAL 31 deletion mutants in the MMTV LTR for use in transient transfection assays. These assays indicated that deletion of two regions (referred to as promoter-distal and -proximal NREs) between ؊637 and ؊201 elevated basal MMTV promoter activity in the absence of glucocorticoids. The region between ؊637 and ؊264 was surveyed for the presence of nuclear protein binding sites by gel retardation assays. Only one type of protein complex (referred to as NRE-binding protein or NBP) bound exclusively to sites that mapped to the promoter-distal and -proximal NREs identified by BAL 31 mutations. The promoter-proximal binding site was mapped further by linker substitution mutations and transfection assays. Mutations that mapped to a region containing an inverted repeat beginning at ؊287 relative to the start of transcription elevated basal expression of a reporter gene driven by the MMTV LTR. A 59-bp DNA fragment from the distal NRE also bound the NBP complex. Gel retardation assays showed that mutations within both inverted repeats of the proximal NRE eliminated NBP binding and mutations within single repeats altered NBP binding. Intriguingly, the NBP complex was detected in extracts from T cells and lung cells but was absent from mammary gland cells. These results suggest that a factor contributing to high-level expression of MMTV in the mammary gland is the lack of negative regulation by NBP.