The objectives of these researches were to investigate the technical fundamentals of synthesizing high-strength biocompatible medical implants and tissue scaffolds made from nitinol or titanium using of Selective Laser Sintering/Melting (SLS/M). In particular, we had been identify the processing parameters and procedures necessary to successfully laser synthesize multi-material and functionally graded implants: the physical and mechanical properties, microstructure, and corrosion behavior of the resulting structures; the shape memory effect in porous layered nitinol structures made using laser synthesis. The comparative morphological and histological results of Selective Laser Sintering of porous titanium and nitinol implants are presented. Studies are conducted also on primary cultures of dermal fibroblasts and mesenchymal stromal human cells of the 4-18 passages. The principle possibility of long cultivating a bone marrow on the porous carrierincubator from NiTi and titanium in vitro was determined. Sufficient understanding of laser synthesized titanium and nitinol structures to determine their suitability for future use as implants, resulting in superior tissue to implant fixation and minimally invasive surgical procedures, was developed.